Blog

513g Request for Information

This article explains what a 513g request for information is for, how to prepare a 513g request, and when to submit the request to the FDA.

Design Timeline with 513g 1024x542 513g Request for Information

What is a 513g?

A “513g” is a request for classification information from the FDA. The reference is to a section of the Food, Drug & Cosmetic Act. The purpose of the submission is to ask the FDA what product classification would be most appropriate for your device and what the appropriate regulatory pathway will be. The FDA is required by the regulation to provide a written response within 60 days of receiving the 513g request. The submission also requires payment of an FDA user fee that is eligible for a small business discount.

In a 2015 blog case study, I explained why I feel that submission of a 513g request for information from the FDA is usually a waste of money. Since that time, our firm has prepared only a few 513g requests. There are a few good reasons for submitting a 513g request. For example, if you are developing a device that might be considered exempt under the 21st Century Cures Act as a general wellness product, your firm might submit a 513g request to verify that pre-market notification is not required for your device.

When should a 513g request for information be submitted?

Usually device companies ask me if I think they should submit a 513g or a pre-submission request to answer questions about the testing requirements. Often the device has a known product classification code requireing a 510(k) submission. Sometimes, there will even be a Special Controls Guidance document available for the product classification. In these situations, a 513g is completely unnecessary. I can understand the difficulties that people experience when trying to navigate the FDA product classification database, because the database does not use modern natural language search algorithms like Google. However, greater concern is that most companies are asking this question after they have already started development of their device and just before they plan to initiate design verification testing. This is very late in the design process–even a little late to be conducting a pre-submission request. Your 513g submission should be during the beginning of your design project (i.e., during the concept or feasibility phases of design) to verify the regulatory pathway.

How to prepare a 513g

For any device submission, including a 513g, you need to prepare a detailed device description for the FDA. Many companies find this difficult. Therefore, we provide a template for the device description. For our 513g templates, we simplified the device description we use for a pre-submission request. We also identified the required sections with an asterisk. The resulting template is shorter and easier to complete.

In addition to the device description, we recommend that you include a copy of draft labeling and instructions for use (IFU) with each device submission. A pre-submission does not require draft labeling, but a 513g classification request does require draft labeling in order to ensure the FDA understands your intended use for the device. Therefore, we provide templates for companies to prepare these drafts.

The last important piece of your 513g classification request is your cover letter. The most important parts of the cover letter, are the questions you ask the FDA about your device. We provide some typical questions that would be asked in a 513g submission, but you will probably have one or more unique questions you want to ask which are specific to your device and indications for use.

Other Resources

If you need to submit a 513g classification request, you can learn more about FDA content requirements by watching our 513g request webinar. If you complete our subscription form for the webinar, you will also receive access to our complete set of 513g templates. The templates for the device description, draft label, and draft instructions for use (IFU) are also the three templates we provide to new clients that will be submitting a pre-submission meeting request, a 510k submission, or a De Novo Classification Request.

Posted in: Uncategorized

Leave a Comment (0) →

De Novo pre IDE Meeting

The article describes the most critical part of the preparation for a De Novo Classification Request, the De Novo pre IDE meeting.pre IDE Meeting Timeline De Novo pre IDE Meeting

There are two critical differences between a De Novo classification request and a 510k submission. First, 510k clearance is based upon a substantial equivalence comparison of a device, and a predicate device that is already marketed in the USA; while a De Novo classification is based upon a benefit-risk analysis of a device’s clinical benefits compared with the risk of harm to users and patients. Second, 510k clearance usually does not require clinical data to demonstrate safety and efficacy, while a De Novo classification request usually does require clinical data to demonstrate safety and efficacy. Therefore, it makes sense that the two most common challenges for innovative medical device companies are: 1) learning how to write a benefit-risk analysis, and 2) designing a clinical study. Success with both of these tasks can be greatly improved by requesting a De Novo pre IDE meeting with the FDA.

Benefit-Risk Analysis Questions to Ask During a De Novo pre IDE Meeting

Most device companies are only familiar with substantial equivalence comparisons–not a benefit/risk analysis. The statement “the benefits outweigh the risks” is not a benefit/risk analysis. The European MDD requires a benefit/risk analysis (mentioned 8 times), while Regulation (EU) 2017/745 mentions benefit/risk 69 times. Despite the obvious increased emphasis on benefit/risk analysis in the new EU Regulations, the new ISO 14971 standard that is expected to be released next month still does not require a benefit/risk analysis for all risks as required by the regulations. The international standard also does not clearly explain how to perform a benefit/risk analysis. The best explanation for how to perform a benefit/risk analysis is provide in the FDA guidance.

In addition to reading that guidance, you will need to systematically identify all of the current alternative methods of treatment, diagnosis or monitoring for your intended use. Therefore, you should ask in a pre-submission meeting if there are any additional devices or treatments that the FDA feels should be considered. You should review each of the alternative treatments for clinical studies that may help you in the design of your clinical study. You should carefully review the available clinical data for alternative treatments to help you quantify the risks and benefits associated with those treatments too. Finally, you should consider whether one or more of these alternative treatments might be a suitable control for your clinical study. Ideally, your clinical study design will show that the benefits of your device are greater and the risks are less, but either may be enough for approval of your classification request. If you think the risks of your device are significantly less than alternative treatments, then ask the FDA about using this factor as a endpoint in your study design.

Clinical Study Design Considerations

Ideally, there is already a well-accepted clinical model for assessing efficacy for your desired indications. This means multiple, published, peer-reviewed journal articles. You might have a better method for evaluating subjects, but don’t propose that method instead of a “gold standard.” If you feel strongly that your method is more appropriate, propose both methods of evaluation. You also need multiple evaluators who are able to be objective. Randomization, blinding, and monitoring of clinical studies is critical to ensure unbiased evaluation of clinical results.

You also need to design your study with realistic expectations. Murphy’s law is always active. That means, “things will go wrong in any given situation, if you give them a chance.” Therefore, you must avoid optimism and devise methods for detecting errors quickly. This is why electronic data capture systems and eSource is preferred for data collection instead of manual collection of data on paper case study forms. Not only does it reduce errors in data collection, but it also facilitates remote monitoring of clinical sites. This includes asking questions that are open ended or quantitative–instead of Yes/No questions or qualitative evaluations that encourage subjectivity. You can always anticipate every mistake that will be made, and open ended questions often capture important data that would otherwise be lost. Asking the quantitative questions also will provide you with additional data you can analyze which may reveal unexpected relationships or help you to explain unexpected results. To help facilitate development of these questions, try asking yourself how you could detect an error for each data point you are collecting. Then add a detection mechanism to your data collection plan wherever and whenever you are able to.

Goals of De Novo pre IDE Meeting

A pre-IDE meeting is not typically your first pre-submission meeting with the FDA. Typically, your first pre-submission meeting is to verify that the FDA agrees with that the regulatory pathway is a De Novo classification request rather than a 510(k) submission. Hopefully, you also were able to review your overall testing plan with the FDA during your first pre-submission meeting. You may have even reviewed a clinical synopsis with the FDA during your initial pre-submission meeting. During the pre-IDE meeting, your goal is to finalize your clinical study protocol. That doesn’t mean that the FDA should agree 100% with your draft protocol. You want positive and negative feedback on the all aspects of your protocol before the IDE submission. During the IDE review, changes will be made.

The most important aspects to get right before the IDE submission are the fundamentals. Most of my De Novo clients feel that a control group is not possible, because they feel that test subjects will know when a sham is used. However, trying to avoid a control group is nearly impossible. The most important factors for why a control group is needed are:

  • you need to minimize differences between experimental and control subjects, but you can’t do that if you are relying on data from other clinical studies
  • you also need to ensure that your evaluation methods are identical, which is nearly impossible when performed by different people, at different facilities, using slightly different protocols

Another area of weakness in most draft clinical protocols is the method of evaluation. Specifically:

  • Who is doing evaluations?
  • Which endpoints are important?
  • When are your endpoints?
  • What is your acceptance criteria?

The last area to consider in a pre-IDE meeting is your statistical plan. You need a statistical plan, but the statistical analysis seldom appears to be the reason for rejection of clinical data. The reason is that changes can be made to your statistical analysis of data after the study is completed, but you can’t change the data once the study is over. In fact, the FDA is now accepting of adaptive designs which allow the company to analyze data during the study to recalculate the ultimate sample size needed based upon actual data rather than initial assumptions.

Other De Novo Classification Request Resources

On Thursday, October 17 we presented a live webinar showing medical device companies how to avoid a stunning disaster. Click here to access the webinar recording. We recorded another webinar about preparation De Novo Classification Requests that you can download from our website. I wrote a blog about De Novo classification requests. You can also learn a lot about how to Design your own De Novo clinical study by reviewing the Decision Summaries published by the FDA for each De Novo in the list of De Novo classification requests. Finally, the FDA pre-sub guidance 2019 is an invaluable resource for preparing any pre IDE meeting request.

Posted in: Uncategorized

Leave a Comment (0) →

Private Labeled Devices with FDA Approval

This article answers one of the most common questions asked by non-US device firms, and by companies that want to import private labeled devices.

This article was originally inspired by a question asked on the Medical Devices Group website hosted by Joe Hage. Companies often ask about how to private labeled devices in the USA, because they are unable to find anywhere in the FDA regulations where private labeling of device is described. The reason for this is, because the FDA regulations for devices allow for the labeling to identify the distributor only—without any mention of the OEM manufacturer on the label. In contrast, most other countries have “own-brand labeling” regulations or regulations for private labeling devices. It is also important to remember that the FDA only approves devices through the pre-market approval (PMA) pathway. All other devices fall into one of three categories: 1) 510(k) exempt, 2) 510(k) cleared, or 3) De Novo classification request approved. Devices that fall into the third category will subsequently fall into category 1 or 2 after the classification request is approved by the FDA.

Questions about the private labeled devices process for FDA

Our distribution company is interested in getting a private labeled devices agreement with an OEM to sell a Class II medical device in the USA. The OEM has 510(k) clearance, and the only product change will be the company’s name and address on the label. There will be no change to the indications for use. Please answer the following questions:

  1. Is it legal to eliminate all mention of the OEM from the device labeling?
  2. Who is responsible for complaint handling and medical device reporting? OEM or private-labeled distributor?
  3. What is the process to get this private label for the Class II device?
  4. How can our distribution company avoid paying the FDA user fee?

Answer to first question about private labeled devices

The FDA is unique in that they allow either the distributor or the manufacturer to be identified on the label, but both are not required. Therefore, if Joe Hage were the distributor, and you were the manufacturer, there are two legal options for the private labeled device: 1) “Distributed by Joe Hage”, or 2) “Manufactured for Joe Hage.”

The manufacturer is not required to be identified on the label. However, the OEM must be registered and listed with the FDA, and if they OEM is outside the USA, then the distributor must register and list with the FDA as the initial importer and reference the K number when they complete the FDA listing. There is no approval required by the FDA. You will need a quality agreement defining roles and responsibilities of each party, but that is all.

Answer to second question about private labeled devices

The quality agreement must specify which company is responsible for complaint handling (21 CFR 820.198) and medical device reporting (21 CFR 803). In this situation, the OEM is the specification developer as defined by the FDA. Therefore, the OEM will be responsible for reporting and execution of recalls. Therefore, even if the distributor with a private label agreement is identified as the “complaint file establishment,” the OEM will still need to obtain copies of the complaint information from the distributor, and determine if medical device reporting and/or corrections and removals are required (i.e., recalls).

Answer to third question about private labeled devices

There is no formal process for “getting a private label.” The entire private label process is negotiated between the distributor and the OEM with no involvement of the FDA. However, in the listing of devices within the FDA FURLS database, all brand names of the device must be identified. Therefore, the OEM will need to add the new brand name used by the distributor to their own listing for the 510(k) cleared product. However, the FDA does have the option to keep this information confidential simply by checking a box in the device listing form.

Answer to fourth question about private labeled devices

If the distribution company is the initial importer of a device into the USA, then the distributor must be registered with the US FDA as the initial importer and the distributor will need to pay the FDA user fee for the establishment registration. That user fee is $5,236 for FY 2020, and there is no small business discount for this fee. The only way to avoid paying the user fee is to have another company import the device, who is already registered with the FDA, and to distribute the product for that company. I imagine there are logistics brokers that might be acting as an initial importer for multiple distributors to help them avoid paying the annual FDA user fee for establishments. That company might also be providing US Agent services for multiple OEMs. However, I have not actually found a company doing this.

Is private labeling of device legal in the USA?

The FDA is unique in that they allow either the distributor or the manufacturer to be identified on the label, but both are not required. Therefore, if Joe Hage were the distributor, and you were the manufacturer, there are two legal options for the private label: 1) “Distributed by Joe Hage”, or 2) “Manufactured for Joe Hage.”

Who must register, list, and pay user fees for medical devices?

This question is frequently asked, and the table with the information was not visible on my mobile browser. Therefore, I copied the table from the FDA website and posted the information in the image below. The information is copied directly from the FDA website:

Registration and Listing Requirements for Domestic Establishments

Who must register list and pay fig 1 1024x697 Private Labeled Devices with FDA ApprovalWho must register list and pay fig 2 1024x710 Private Labeled Devices with FDA Approval

Registration and Listing Requirements for Foreign Establishments

Who must register list and pay fig 3 1024x947 Private Labeled Devices with FDA Approval

For products that are manufactured outside the USA, and imported into the USA, the initial importer is often the company identified on the label. There are two typical private labeling situations, but other possibilities exist:

  1. If the initial importer owns the 510(k), then the manufacturer outside the USA is identified as the “contract manufacturer,” and the initial importer is identified as the “specifications developer.” Both companies must register their establishments with the FDA, and there needs to be a quality agreement between the two companies defining roles and responsibilities. The contract manufacturer outside the USA is not automatically exempt from reporting requirements and complaint handling. The contract manufacturer outside the USA may decide to label the product as: a) “Manufactured by”, b) “Manufactured for”, or c) “Distributed by.” Options “a”, “b” and “c” would list the importer’s name, because they own the 510(k) and they are the distributor. This situation often occurs when companies outside the USA want to sell product in the USA, but they do not want to take on the responsibility of obtaining 510(k) clearance. These firms often believe this will exempt them from FDA inspections, but the FDA is increasingly conducting FDA inspections of contract manufacturers due to this private label situation.
  2. If the manufacturer owns the 510(k), then the manufacturer outside the USA is identified as the “specifications developer” and the “manufacturer,” while the initial importer will be identified as the “initial importer.” The importer may also be specified as the complaint file establishment and/or repackager/relabeler in the FDA registration database. The manufacturer outside the USA will not be able to import the device into the USA without identifying an initial importer in the USA in the FDA FURLS database. The manufacturer outside the USA may decide to label the product as: a) “Manufactured by”, b) “Manufactured for”, or c) “Distributed by.” Options “b” and “c” would list the importer’s name, while option “a” would list the manufacturer’s name. This situation often occurs when US companies want to be the distributor for a product made outside the USA, and the company wants a private labeled product. This also happens when the OEM wants the option to have multiple US distributors.

In both of the above private label situations, the non-US firm must have a US Agent identified, because the company is located outside the USA. The US Agent may be the initial importer, but this is not required. It could also be a consulting service that acts as your US Agent. The US Agent will be responsible for receiving communications from the FDA and confirming their role as US Agent each year when the registration is renewed. Medical Device Academy offers this service to non-US clients we help obtain 510(k) clearance.

Follow-up questions

A Korean company, with a US distribution subsidiary, would like to private label a medical device with an existing 510(k) owned by another company in their name. Does the Korean company need a contract in place prior to private labeling? Does the US subsidiary and/or the Korean parent company need to be registered in the USA prior distribution of the private labeled version of the device in the USA?

Rob’s response: Initially, it was unclear form the wording of the question as to whom is the 510(k) owner, which company will be on the label, who is doing the labeling, and who is doing the importing to the USA. The person asking Joe Hage this question tried clarifying their question via email, but we quickly switched to scheduling a phone call using my calendly link. I have reworded the question above, but here are some of the important details I learned during our phone call:

  1. The person asking was already acting as the relabeler, repackager, and they were distributing the product in the USA. This person’s company is also registered with the FDA.
  2. The device is 510(k) cleared by another US company, and there is no need to worry about the complications of an initial importer being identified for a product manufactured in the USA.

In this situation, the relabeler/repackager can relabel the product for the Korean company’s US subsidiary as long as there is a quality agreement in place for all three parties (i.e., relabeler, distributor, and manufacturer). There is no need for the Korean parent company to register with the FDA. There is no need for a new 510(k) submission, and the US subsidiary does not need to register with the FDA—as long as the quality agreement specifies that the US subsidiary will maintain records of distribution, facilitate recalls if needed, and notify the manufacturer of any potential complaints and/or adverse events immediately. The manufacturer with 510(k) clearance will be responsible for complaint handling, medical device reporting, and execution of recalls according to the agreement. The relabeler will be responsible for maintaining records of each lot of product that is relabeled for the US subsidiary, and the relabeler must maintain distribution records that clearly link the original manufacturer’s lot to the lot marked on the relabeled product.

If you are have questions about private labeling of your device, please contact us.

Posted in: Uncategorized

Leave a Comment (0) →

Integrating usability testing into your design process

This article explains how you should be integrating usability testing into your design control process–especially formative usability testing.

Integrating Usability Engineering and Risk Management into your Design Control Process Integrating usability testing into your design process

Why you should be integrating usability testing into design

We recently recorded an updated usability webinar and released a usability procedure (SYS-048) with help from Research Collective–a firm specializing in human factors testing. After listening carefully to the webinar, and reading through the new usability procedure, I felt we needed to update our combined design/risk management plan to specify formative testing during phase 3 and summative (validation) testing during phase 4 of the design process. This is necessary to ensure your usability testing is interwoven with your risk management process. Integrating usability testing into all phases of your design process is critical–especially design planning (phase 1), feasibility (phase 2), and development (phase 3).

Identifying Usability Issues During Planning & Feasibility Phases

During the usability training webinar, Research Collective provided a diagram showing the various steps in the usability engineering process. The first five steps should be included in Phases 1 and 2 of your design process. Phase 1 of the design process is planning. In that phase you should identify all of the usability engineering tasks that need to be performed during the design process and estimate when each activity will be performed. The first of these usability activities is identification of usability factors related to your device. Identifying usability factors is performed during the Phase 2 of your design process, prior to hazard identification.

Indentifying Usability Issues 300x209 Integrating usability testing into your design process

Prior to performing hazard identification, which should include identifying potential use errors, you need to identify five key usability elements associated with your device:

  1. potential device users during all stages of use must be defined
  2. use environments must be identified
  3. user interfaces must be identified
  4. known use errors with similar devices and previous generations of your device must be researched
  5. critical tasks must be described in detail and analyzed for potential use errors

Defining users must include the following characteristics: physical condition, education, literacy, dexterity, experience, etc. Use environment considerations may include low lighting, extreme temperatures or humidity, or excessive uncontrolled motion (e.g., ambulatory devices). User interfaces may include keyboards, knobs, buttons, switches, remote controllers, or even a touch screen display.

Often the best reason for developing a new device is to address a common use error that is inherent to the design of your current device model or a competitor’s product. Therefore, a thorough review of adverse event databases and literature searches for potential use errors is an important task to perform prior to hazard identification. This review of adverse event data and literature searches of clinical literature are key elements of performing post-market surveillance, and now ISO 13485:2016 requires that post-market surveillance shall be an input to your design process.

Finally, the step-by-step process of using your device should be analyzed carefully to identify each critical user task. User tasks are defined as “critical” for “a user task which, if performed incorrectly or not performed at all, would or could cause serious harm to the patient or user, where harm is defined to include compromised medical care.” Not every task is critical, all critical tasks must be identified and ultimately you need to verify that each critical task is performed correctly during your summative (validation) usability testing.

Evaluating Risk Control Options – Phase 3 (Development)

Once your design team has conducted hazard identification and identified your design inputs (i.e., design phase 2), you will begin to evaluate risks and compare various risk control options. Risk control option analysis requires testing multiple prototype versions to assess which design has the optimum benefit/risk ratio. This is an iterative process that involves screening tests. For any use risks you identify, formative usability testing should be performed. Sometimes the risk controls you implement will create new use errors or new risks of other types. In this case, you must compare the risks prior to implementing a risk control with risks created by the risk control.

Formative Usability Testing Process 220x300 Integrating usability testing into your design process

Ideally, each design iteration will reduce the risks further until all risks have been eliminated. The international risk management standard (ISO 14971) states that risks shall be reduced as low as reasonably practicable (ALARP). However, the European medical devices regulations require risks to be reduced as far as possible considering the state-of-the-art. For example, all small bore connectors in the USA are now required to have unique connectors that are incompatible with IV tubing luer lock connections to prevent potential use errors. That requirement is considered “state-of-the-art.” If your device is marketed in both the USA and Europe, you will need to reduce errors as far as possible–prior to writing warnings and precautions in your instructions for use.

Reaching the point where use errors cannot be reduced any further may require many design iterations, and each iteration should be subsequently evaluated with formative usability testing. Formative testing can be performed with prototypes, rather than production equivalents, but the formative testing conditions should also address factors such as the use environment and users with different levels of education and/or experience. Ultimately, if the formative testing is done well, summative (validation) testing will be a formality.

Risk Control Effectiveness During Phase 4 – Verification Testing

Once your team freezes the design, you will need to conduct verification testing. This includes integrating usability testing into the verification testing process. Summative (validation) testing must be performed once your design is “frozen.” If you are developing an electrical medical device, then you will need to provide evidence of usability testing as part of your documentation for submission to an electrical safety testing lab for IEC 60601-1 testing. In fact, there is a collateral standard for usability (i.e., IEC 60601-1-6). For software as a medical device (SaMD), you will also be expected to conduct usability testing to demonstrate that the user interface does not create any use errors.

Summative Usability Testing Process 174x300 Integrating usability testing into your design process

When you conduct summative (validation) testing, it is critical to make sure that you are using samples that are production equivalents rather than prototypes. In addition, it is critical to have your instructions for use (IFU) finalized. Any residual risks for use errors should be identified in the precautions section of your IFU, and the use of video is encouraged as a training aid to ensure use errors are identified and any potential harm is understood by the user. When the summative testing is performed, there should be no deviations and no use errors. Inadequate identification of usability factors during Phase 2, or inadequate formative testing during Phase 3, is usually the root cause of failed summative testing. If your team prepared sufficiently in Phase 2 and 3, the Phase 4 results will be unsurprisingly successful.  

Additional Training Resources for Usability Engineering

Our human factors testing webinar was recently updated by Research Collective–a consulting firm specializing in usability engineering. SYS-048, Medical Device Academy’s Usability Procedure, is compliant with IEC/ISO 62366-1 (2015). The procedure includes a template for conducting summative (validation) usability testing. We have also updated our design plan template to include usability testing elements.

Posted in: Uncategorized

Leave a Comment (0) →

pFMEA, an Introductory Look.

This article is an introductory look at what exactly is a pFMEA or Process Failure Modes and Effects Analysis, and some ideas on how to use them as part of a living breathing risk management system.

RPN Scoring Table pFMEA, an Introductory Look.

I recently had someone ask for help understanding the
process FMEA a little better. I can’t blame them because I was lost the first
time I tried to fill out a form for one. It can be a confusing and overwhelming
if you have never seen one before.

First things first, what is a pFMEA-

FMEA= Failure Modes and Effects Analysis

A lower-case letter will come before the FMEA, and that denotes the ‘what’, of what the failure is that is being analyzed. A pFMEA will often be examining process failures where a dFMEA might evaluate design failures. (dFMEA’s can be confusing as well, Robert Packard created a training on how to document risk management activities without using one in his Death of the dFMEA Webinar)

Some systems capitalize all the letters. Some capitalize
none. That is not what is important as long as it is consistent throughout your
system. Everyone should be able to easily understand that whatever variation of
pfmea is used it means “process failure modes and effects analysis”. 

What does a pFMEA do?-

A pFMEA will break down your manufacturing process into its individual steps and methodically examine them for potential risks or failures. For companies that utilize our Turn-Key Quality Management System, FRM-025 process Failure Modes and Effects Analysis can be used as a template.

For this example, we will look at receiving inspection of
injection molded casing parts for a medical device. This receiving inspection
includes a manual inspection of 10 randomly selected parts out of each delivery
of 100 using an optical overlay.

Process Step-

This area as the section title suggests is the process step. When looking at the process as a whole the pFMEA will break it down into each and every step included in that process. This area is simply that individual step that is going to be examined.

The Process Step, or item function depending on what your form uses for this scenario is going to be part of the random sampling for manual inspection of the received parts using an optical overlay. Our example is going to be the backlighting element of the optical overlay display. The backlighting element will illuminate the inspected part against the template to verify that the part is within specific dimension criteria.

Potential Failure Modes-

A failure mode is a way in which that process step might fail. since it is failure modeS, it needs to be considered that there may be more than one way for the process step to fail. Do not be fooled that because this box on the form has been filled in that the pFMEA will be complete. A thorough examination of all of the possible failures should be investigated.

Our example in this process requires the backlighting element to illuminate a visual template over the parts. The light not illuminating properly is a potential failure mode of this process.

Potential Effects of Failure-

the potential effects of the failure is a look into what the ramifications would be if that failure for that process step actually happened.

In our scenario one of the potential effects of the lighting not functioning properly is that parts outside of the designated sizing acceptance criteria may be accepted rather than rejected as non-conforming parts.

S (Severity)-

The next area is the first area that requires an estimated grading of the failure. That is ‘Severity’ which is abbreviated as S. There is a scale provided in the ratings section of FRM-025 that outlines the numbering system that Medical Device Academy uses.

Below is a snippet of the rating scale used, this is included with purchase of SYS-010 Risk Management Procedure.

Severity (S)
Severity of the effect Scale Definition
Business Risk 0 No potential harm to patient or user
Superficial 2 Little potential for harm to patient or user

In this case our example is using molded plastic pieces of the outside casing of a medical device. Pieces that are too large or too small will not fit when making the final assembly of the device. These plastic pieces do not happen to be patient contacting, and do not affect the function of the device.

The evaluation of this failure is determined to have no
potential affect on patient safety or increase any potential for risk of harm,
therefore the severity is assigned as a ‘business risk’ meaning that it bears
no risk for the user or the patient. This makes the Severity Score 0.

Causes of Failure-

This column is exactly that. What might cause this identified failure to happen? In our example might be the light bulbs in the overlay machine may slowly burn out over time with use. This burnout causes the potential failure.

If the bulb is expected to only have a lifetime of 100 hours,
then the more hours the bulb is used the more dim the light may become. A
slowly dimming light decreases the sharpness of the overlay template and our
parts that are supposed to have a + or – size criteria of 10% now have a fuzzy
template that in reality changes the overlay to show closer to + or – 13%. Now
parts that are too small or too large may be accepted.

O (Occurrence/Probability)-

This grading criteria is also found in the Ratings section
of FRM-025. This is how often the failure is expected to occur. How often will
the lighting element of our optical overlay fail to function in the appropriate
manner for this cause?

Hopefully not very often. In fact, regularly scheduled
maintenance and calibration of the overlay machine could prevent this from ever
happening in the best-case scenario. Our evaluations determine that the
probability of this happening is low. However, since we cannot be certain it
will never happen the potential for this risk exists and makes the Occurrence
score a 4.

Current Process Controls-

What is currently being done to control this risk? Our
example uses regularly scheduled maintenance and calibration to prevent bulb
burnout effecting the overlay.

D (Detectabiliy)-

Our current process is based off of routine maintenance and
visual inspection. This means that the bulb burnout is something that is
visually inspected for and visual inspections for detectability on the rating
scale are graded as 8. This chart is found in the Ratings Section of FRM-025.

RPN (Risk Priority Number)-

This is a number that is found by multiplying the Severity,
by the Probability, by the Detectability. In our example the numbers RPN
is  0X4X8=32 for an RPN of 32 which is
considered LOW.

pFMEA math-

Below is a short video explaining the math behind calculating the Risk Priority Number

https://www.youtube.com/watch?v=OWfyHyx-zhI&feature=youtu.be

Recommended Actions-

What if anything can be done to improve this process? In our
example a recommended action may be to transfer from visual only inspections to
verification of light output by meter. This makes the Detectability of the
failure measurable by meter or gage which is a detectability score of 4.

This changes the RPN now to 0X4X4=16

The pFMEA shouldn’t be a solo thing-

If it can be avoided this type of analyisis should be done by a multidisciplinary team. Sometimes in smaller companies people end up having to wear more than one hat. There are many entrepreneurs that have to function as the CEO/CFO/Design Engineer/RA/QA manager.

Ideally a team approach should be used if feasable. Have the management level staff who have ownership of the processes participating in this analysis. They should know the process more intimately than anyone else in the company and should have more insight into the possible failure modes of the processes as they have likely seen them first hand. They are also the type of employee who would know the types of recomended actions to control the risk of those failures as well.

The pFMEA should also be a living document-

As new failure modes are discovered they should be added to your pFMEA. A new failure mode might be discovered through a CAPA because the process had an actual failure that was not originally analyzed. Take an instance like that as an opportunity for improvement and to update your pFMEA as part of a living breathing risk management system. Also use this as a time to re-brainstorm potentially similar failure modes that may not have been considered previously so that they can be controlled before they happen.

If you took the time to watch the video above it is also mentioned that in some instances the very first FMEA must be based off of estimates because there is no data. Managers, and engineers may be forced to estimate the probability of occurence. If that is the case the FMEA should be updated in the future to adjust the (O) score to reflect what is occuring in actuality based off of real data and not the theoretical data that was used for the initial estimate.

Posted in: Process Validation, Quality Management System, Risk Management

Leave a Comment (0) →

Hiking Expedition

On August 9, 2019 three generations of my family left Glastonbury, CT on a two week hiking expedition to complete three of the highest peaks in the USA.

Our plan for the hiking expedition was to hike four of the highest peaks. My father, Bob Packard (age 77), is trying to complete all 50 of the highest peaks in each of the United States. For this trip we planned to hike the following peaks:
  1. Wheeler Peak – New Mexico
  2. Kings Peak – Utah
  3. Borah Peak – Idaho
  4. Granite Peak – Montana

Bailey Packard (18), Noah Packard (20), Rob Packard (47) and Bob Packard (77) started on Friday, August 9 from Glastonbury, CT.

Start 300x225 Hiking Expedition

Glastonbury, CT

Then we drove West….for a really long time. On Saturday, August 10 we stopped at the Waffle House.

Waffle House 300x169 Hiking Expedition

Waffle House

Then we got back in the car…

3 Driving 300x169 Hiking Expedition

Finally, on Sunday, August 11 we arrived in at the base of Wheeler Peak. We decided to hike it that day despite not acclimating to the altitude and not sleeping in two days.

4 Bailey Base of Wheeler e1566919907502 225x300 Hiking Expedition

Bailey Packard

5 Noah Base of Wheeler e1566919966989 225x300 Hiking Expedition

Noah Packard

Wheeler Peak 1 300x225 Hiking Expedition

Wheeler Peak

Wheeler Peak 2 300x225 Hiking Expedition

Wheeler Peak 3 1 e1566920143315 225x300 Hiking Expedition

Wheeler Peak 4 e1566920187157 225x300 Hiking Expedition

Wheeler Peak 5 e1566920220978 225x300 Hiking Expedition

Wheeler Peak 6 300x225 Hiking Expedition

Then we headed back across the ridge and down to the car. The evening we drove to Colorado and slept. The following morning, Monday, August 12, we drove through Colorado…

Driving through Colorado 300x169 Hiking Expedition

That evening we arrived at Henry’s Fork Trail Head in Utah several hours after dark. We pitched tents in the parking area, and slept for the night. In the morning, Tuesday, August 13, we woke to ice on our tents. Then we began the long hike into valley (see Bailey’s video above).

Entering Valley Near Kings Peak 300x169 Hiking Expedition

We were all carrying too much gear, and we needed some rest.

Taking a Break on Kings Peak Day 1 300x169 Hiking Expedition

While we enjoyed the view of the valley…

Taking a Break on Kings Peak Day 1 from a different view 300x169 Hiking Expedition

Later we saw a couple of moose (Bailey got close enough for a selfie).

Bailey says hello to the Moose 300x169 Hiking Expedition

We slept the night just below Gun Sight Pass, and then headed up Kings Peak in the morning of Wednesday, August 14.

Kings Peak Group Photo 300x169 Hiking Expedition

Another spectacular view…

Kings Peak View 300x169 Hiking Expedition

Then we headed back across the ridge (very challenging and exposed).

Kings Peak Ridge 300x169 Hiking Expedition

That afternoon Bailey got lost, but we found him back at the tents several hours later just before dark. Noah was exhausted and took a nap in the middle of the Gun Sight Pass. We all slept well, and hiked back to the car in the morning of Thursday, August 15.

Dad Taking a Break e1566921771896 169x300 Hiking Expedition

Then we drove to Idaho Falls, and we had all you can eat steak at Stockman’s.

We took at rest day on Friday, August 16. On Saturday it was perfect weather and we drove to Borah Peak in Idaho–just two hours Northwest from Idaho Falls. We arrived just after 6am and began hiking as the sun rose.

Borah Peak 300x225 Hiking Expedition

Now I understand why Wheeler was rated a 1+ in difficulty, Kings Peak was rated a 2+ in difficulty and Borah is 3+ in difficulty. There is a 2,000+ foot cliff on both sides of a goat path across a knife edge. There is sharp, jagged shale everywhere and no trees. Winds are fierce, and it’s not a windy day. Temperatures were in the low 40s. I decided to “chicken out” just before we got to “Chicken Out Ridge”.

Where Rob Waited 300x225 Hiking Expedition

Where Rob waited for the others.

The ice bridge was not expected, and dozens of weekend hikers with no experience were trying to crawl across the ice. Bailey used his knife for extra grip on the ice. Bob was almost knocked off the mountain by a falling boulder and they made it to the peak…waiting for Bailey’s pictures to be added later.

Then we all headed down the mountain.

Dad and Bailey on Borah e1566921715900 225x300 Hiking Expedition

Noah on Borah e1566921886585 225x300 Hiking Expedition

Rob on Borah e1566921940799 225x300 Hiking Expedition

The following day, Sunday, August 18, we drove home…our feet were too sore to attempt Granite Peak. But along the way, we stopped on Monday, August 19 at Portillo’s for

Thank you for your support, and thank you to Noah and Bailey for joining me and my dad on this hiking expedition. These are memories we’ll never forget.

Posted in: Uncategorized

Leave a Comment (0) →

What is a Gap Analysis?

This article describes what a gap analysis is in the context of managing your quality system when standards and regulations are updated.

Compliance Assessment Gap Analysis Picture 1024x683 What is a Gap Analysis?
Compliance Assessment/Gap Analysis

What is a Gap Analysis? An introductory look.

Well, that depends on the context. The dictionary definition is “A technique that businesses use to determine what steps need to be taken in order to move from its current state to its desired, future state. Also called need-gap analysis, needs analysis, and needs assessment.” (http://www.businessdictionary.com/definition/gap-analysis.html). 

For the most part this is correct, but we need to tweak it just a little bit to fit better into our regulatory affairs niche, specifically medical device manufacturers. A gap Analysis for a financial investment, or an advertising firm will be very different than one for a medical device distributor. It might even be better served to be called a Compliance Assessment/Gap Analysis, but I am sure someone else has thought of that long before me.

For our purposes the Gap Analysis is formal comparative review of an internal process or procedure against a standard, good practice, law, regulation, etc. This blog article will be an introductory look into that process.

What are the two BIG goals of a Gap Analysis?

It sounds like a simple exercise, but the Gap Analysis or GA for short, can have two very different but complimentary functions. Rather than simply hunting for areas of non-compliance the first goal is to find and demonstrate areas of compliance. 

The second more obvious goal is to find the gaps between the process and the regulatory requirements they are being compared against. 

Why is demonstrating compliance important?

Because this is a formal documented review, a Gap Analysis provides documentation in a traceable manner of meeting the requirements that have been laid out. That traceability is important because it allows anyone to read the report, see the requirement and locate the area of the procedure that demonstrates conformity with that requirement. 

The report itself is an objective tool, not something that is meant to be a witch hunt. The Gap Analysis will compare document contents. If you want to verify that the entire process is fully compliant you will need to dig deeper and observe if the activities laid out within the procedure are being performed per the procedure instructions. It is possible to draft procedures that are compliant with text requirements but non-compliant in the manner that the actions are actually being performed and documented.

What about gaps?

The gaps, or areas of non-compliance highlight opportunities for improvement, if there are any. A Gap Assessment may not find any gaps and present a report that clearly and neatly outlines and explains how each regulatory requirement is being met. 

If there are any gaps identified that does not mean that there is cause for concern. This should be viewed rather as an opportunity for improvement. Standards and procedures change over time and it is natural that procedures and processes will have to change with them.

In fact, the very act of the Gap Analysis shows that there is a documented effort towards continual improvement as long as the gaps are addressed. 

Addressing the Gaps

The report is ideally the first and last step and you have a wonderful piece of paper to show that someone checked, and all of the required areas are being met. However, this is not always the case. When there are gaps, they must be filled.

Addressing a gap should happen in a traceable manner, one that shows it was identified, acknowledged and then how it was fixed. Something that might be addressed through a CAPA process, but that is a topic for a different time. 

In Closing

The Compliance Assessment/Gap Analysis is a singular tool used in the overall maintenance of a quality system. Its actions and performance are similar to a simplified type of audit, but the Gap Analysis itself is not going to replace your regularly scheduled audit activities. However, it will help you monitor and keep your fingers on the overall pulse of your quality system. This is also especially helpful in situations where standards and regulations are updated, and your quality system needs to be evaluated and updated accordingly.

For more in-depth education in specialized areas of assessment look into our training on Technical File Auditing for MDR compliance against Regulation (EU) 2017/745 at the link below.

Technical File Auditing for MDR Compliance

Posted in: Quality Management System

Leave a Comment (0) →

FDA User Fees FY2020

This article is a reminder that the new FDA User Fees FY2020 have been announced, and it is time for you to re-apply for small business qualification.

20190810 075548 1024x768 FDA User Fees FY2020

FDA User Fees FY2020 = 5.85% Increase in 510(k) User Fee

In 2016 the FDA and industry negotiated revised user fees to achieve faster decision timelines. In return for higher user fees, the FDA promised faster decision timelines. This agreement ultimately became the Medical Device User Fee Amendments of 2017 (i.e., MDUFA IV). This new higher fee structure was implemented in FY 2018 (i.e., October 2017). The MDUFA IV agreement also included plans for inflation adjustments each year. Therefore, on July 31, 2019 the FDA announced the new inflation-adjusted pricing for FDA User Fees FY2020 in the Federal Register.

This new pricing for the medical device user fees is published in Table 5 of the July 31st announcement. All of the fees increased. The 510k standard user fee, for example, increased from $10,953 to $11,594–and increase of 5.85%. The FDA also sent out an email update about the increased user fees last week.

Prior to FY 2019, companies were not able to apply for small business status until October 1. However, in August 2018 the FDA changed the forms, guidance and policies to allow companies to apply for small business status as soon as August 1. The form also now allows the applicant to fill-in the applicable fiscal year. This eliminates the need for the FDA to update the application form each year.

The approval of small business status by the FDA can take up to 60 days. Therefore, every small business planning to submit a regulatory submission to the FDA in FY 2020 should apply for small business status now–instead of waiting until October or when they are planning to submit. This will reduce the possibility of a company needing to submit their submission before they have been qualified by the FDA as a small business and paying the higher standard user fee.

When you submit your application, make sure that you send an original application, because the FDA will not accept a copy–especially for international submissions. Companies located outside the USA, or companies with subsidiaries outside the USA, must obtain verification of the taxes paid by the national tax authority in each country. This extra step makes it even more critical for device companies to start the application process immediately.

In parallel with these annual user fee increases, Medical Device Academy increased our flat-fee pricing for preparing submissions on August 1. The new higher consulting fee increased from $12,000 to $14,000. This fee does not include our flat-fee for each FDA eCopy of $150/eCopy–typically averaging $600/project. However, we now include any time required to response to RTA Hold Letters and requests for additional Information. This typically ranges from 5-10 hours of consulting time at $300/hour. Therefore, the net change is from $14,250 to $14,600 (i.e., an increase of 2.46%). More importantly, it makes the total cost of hiring our firm more predictable and less time consuming for our firm to quote. Our firm’s hourly rates have not changed.

If you are interested in learning more about applying for small business status, please visit our webinar page on this topic or contact us for help. If you are interested in our new pricing, please click on the download button found on our home page.

Posted in: Uncategorized

Leave a Comment (0) →

Auditing Technical Files

This article explains what to look at and what to look for when you are auditing technical files to the new Regulation (EU) 2017/745 for medical devices.

Auditing Technical Files what to look at and what to look for 1024x681 Auditing Technical Files

Next week, August 8th @ Noon EDT, you will have the opportunity to watch a live webinar teaching you what to look at and what to look for when you are auditing technical files. Technical files are are the technical documentation required for CE Marking of medical devices. Most quality system auditors are trained on how to audit to ISO 13485:2016 (or an earlier version of that standard), but very few quality system auditors have the training necessary to audit technical files.

Why you are not qualified for auditing technical files

If you are a lead auditor, you are probably a quality manager or quality engineer. You have experience performing verification testing and validation testing, but you have not prepared a complete technical file yourself. You certainly can’t describe yourself as a regulatory expert. You are a quality system expert. A couple of webinars on the new European regulations is not enough to feel confident about exactly what the content and format of a technical file for CE marking should be.

Creating an auditing checklist

Most auditors attempt to prepare for auditing the new EU medical device regulations by creating a checklist. The auditor copies each section of the regulation into the left column of a table. Then the auditor plans to fill in the right-hand columns of the table (i.e., the audit checklist), with the records they looked at and what they looked for in the records. Unfortunately, if you never created an Essential Requirements Checklist (ERC) before, you can only write in your audit notes that the checklist was completed and what the revision date is. How would you know if the ERC was completed properly?

In addition to the ERC, now called the Essential Performance and Safety Requirements (i.e., Annex I of new EU regulations), you also need to audit all the Technical Documentation requirements (i.e, Annex II), all the Technical Documentation on Post-Market Surveillance (i.e., Annex III), and the Declaration of Conformity (i.e., Annex IV). These four annexes are 19 pages long. If you try to copy-and-paste each section into an audit checklist, you will have a 25-page checklist with more than 400 things to check. The end result will be a bunch of check boxes marked “Yes” and your audit will add no value.

Audits are just samples

Every auditor is trained that audits are just samples. You can’t review 100% of the records during an audit. You can only sample the records as a “spot check.” The average technical file is more than 1,000 pages long, and most medical device manufacturers have multiple technical files. A small company might have four technical files. A medium-size company might have 20 technical files, and a large device company might have over 100 files. (…and you thought the 177-page regulation was long.)

Instead of checking a lot of boxes “Yes,” you should be looking for specific things in the records you audit. You also need a plan for what records to audit. Your plan should focus on the most important records and any problem areas that were identified during previous audits. You should always start with a list of the previous problem areas, because there should be corrective actions that were implemented and effectiveness of corrective actions needs to be verified.

Which records are most important when auditing technical files?

I recommend selecting 5-7 records to sample. My choices would be: 1) the ERC checklist, 2) the Declaration of Conformity, 3) labeling, 4) the risk management file, 5) the clinical evaluation report, and 6) post-market surveillance reports, and 7) design verification and validation testing for the most recent design changes. You could argue that my choices are arbitrary, but an auditor can always ask the person they are planning to audit if these records would be the records that the company is most concerned about. If the person has other suggestions, you can change which records you sample. However, you should try not to sample the same records every year. Try mixing it up each year by dropping the records that looked great the previous year, and adding a few new records to your list this year.

What to look for when auditing technical files

The first thing to look for when you audit records: has the record been updated as required? Some records have a required frequency for updating, while other records only need to be updated when there is a change. If the record is more than 3 years old, it is probably out of date. For clinical evaluation reports and post-market surveillance reports, the new EU regulations require updating these reports annually for implantable devices. For lower risk devices, these reports should be updated every other year or once every three years at a minimum.

Design verification and design validation reports typically only require revisions when a design change is made, but a device seldom goes three years without a single change–especially devices containing software. However, any EO sterilized product requires re-validation of the EO sterilization process at least once every two years. You also need to consider any process changes, supplier changes, labeling changes and changes to any applicable harmonized standards.

Finally, if there have been any complaints or adverse events, then the risk management file probably required updates to reflect new information related to the risk analysis.

Which record should you audit first?

The ERC, or Essential Performance and Safety Requirements checklist, is the record you should audit first. First, you should verify that the checklist is organized for the most current regulations. If the general requirements end with section 6a, then the checklist has not been updated from the MDD to the new regulations–which contains 9 sections in the general requirements. Second, you should make sure that the harmonized standards listed are the most current versions of standards. Third, you should make sure that the most current verification and validation reports are listed–rather than an obsolete report.

How to learn more…

If you want to learn more about how to audit technical files, please register for our webinar on auditing technical files–August 8th @ Noon EDT. We also provide a new audit report template specifically written for your next technical file audit.

Posted in: Uncategorized

Leave a Comment (0) →

Accelerating design projects – one secret you haven’t heard

This article identifies one overlooked secret to accelerating design projects that you can implement immediately and it will work on every project.

A secret Accelerating design projects   one secret you havent heard

You would love to cut a few weeks off the launch schedule for your device. If you had a magic wand, what would you wish for? The trick to accelerating design projects is not an unlimited budget, hiring ten more engineers, or paying a Nationally Recognized Testing Laboratory (NRTL) to only work for you.

I know a secret for accelerating design projects that will work, but first you need to understand why projects take as long as they do. Yes, I worked on a few design teams, but I learned the most from watching companies make mistakes that created delays and cost them time. Sterility tests can not be made shorter, guinea pig maximization tests (GPMT) can’t be completed in four weeks, and your electrical safety testing report will not be delivered when the lab promised it would be.

Accelerating design projects by preventing testing delays

The primary source of delay is not that testing is delayed, but rather the testing is not started as early as it could be. Some managers believe that the solution is to use a Gantt chart. Unfortunately, Gantt charts are not a solution. Gantt charts are just tools for monitoring projects. There is much more to project management. If you forget to do just one test, your entire project will be delayed until that test is finished. Therefore, making sure you identify every required test is an essential early project task–even before you start designing your device. You also need to update the plan when things change.

Start with a generic template for your testing plan

Our firm has a template for a device testing plan that we use for every pre-submission request. In fact, getting help creating your testing plan is one of the most important reasons to hire our firm to help you with a pre-submission request. Surprisingly, our template is more comprehensive than most design plans. What makes our plan surprising is that it’s a generic testing plan that I created in 30 minutes. If you would like it, just email me at rob@13485cert.com. We also have an updated template for combined design and risk management plans.

I’m not suggesting that our plan template already includes every single safety and performance test. Our testing plan does not include everything. However, we spend several hours looking for applicable guidance documents and researching the testing requirements for your device. Then we add the requirements we find to your customized testing plan in the pre-submission request.

Basics of shortening the critical path

If your testing plan includes 100% of the safety and performance tests that you need, your project will still be unnecessarily delayed. The reason for the unnecessary delay is that you are not taking advantage of the three most important timing factors:

  1. First, do every test in parallel that you can.
  2. Second, identify any tests that must be done sequentially.
  3. Third, protect your critical path from further delays.

If the three “tricks” I listed above are new to you, you might consider reading more about single-minute exchange of die (SMED) techniques, and applying the theory of constraints to project management:

In summary, I gave you several clues to the one secret. But the one secret is simple and practical. You need someone on your team who only focuses on the testing plan. Usually every person on a design team is multitasking, but none of us can really focus when we are multitasking. As the design project manager, it would be impossible for you to focus on one task. You are a project manager of a design team, and managing a project team is inherently all about multitasking. Therefore, you need to give one person on your team the task of focusing on the testing plan throughout the entire project. It doesn’t have to be the same person during every phase of the project. In fact, by rotating who that person is, each person assigned this responsibility only needs to be dedicated for a short duration. This is a critical concept. One person must be focused on your testing plan, and that person must be dedicated to that task as long as they are responsible for focusing on your testing plan. You might even consider making a big deal out of it…

Our testing plan is my life t shirt 1 298x300 Accelerating design projects   one secret you havent heard

Managers are always looking for creative ways to motivate teams. Custom t-shirts are fun, you can quickly design a different t-shirt for each role on the team, everyone can wear their t-shirt to team meetings, and the testing plan t-shirt will clearly identify who has the responsibility for focusing on the secret to completing the project on schedule. You can order one of these t-shirts from us for $15. I dare you to compare the cost of a few custom t-shirts with the other solutions you were considering.

Our testing plan is my life t shirt 1 Accelerating design projects   one secret you havent heard
Our Testing Plan is my life T-Shirt

Please click the button to confirm that you’d like to receive the t-shirt shown in the picture. Please let us know what size you would like (M, L, XL, 2XL, 3XL). Only white t-shirts available with black graphics. We also need your shipping address. Shipping via US Postal Service is FREE. If you want the t-shirt expedited, we can ship it via FedEx to you. We will invoice you for the cost of our FedEx shipping to your location.

Price: $15.00

Your cart is empty

If you liked this article, please share it. If you are interested in design control or risk management training, consider purchasing one of our webinars on those topics for your company.

Posted in: Design Control

Leave a Comment (0) →
Page 1 of 25 12345...»